Blogger Widgets

Senin, 09 November 2015

Pengertian dioda zener BESERTA GAMBAR

Pengertian Dioda Zener adalah diode yang memiliki karakteristik menyalurkan arus listrik mengalir ke arah yang berlawanan jika tegangan yang diberikan melampaui batas "tegangan tembus" (breakdown voltage) atau "tegangan Zener". Ini berlainan dari diode biasa yang hanya menyalurkan arus listrik ke satu arah.
Dioda yang biasa tidak akan mengalirkan arus listrik untuk mengalir secara berlawanan jika dicatu-balik (reverse-biased) di bawah tegangan rusaknya. Jika melampaui batas tegangan operasional, diode biasa akan menjadi rusak karena kelebihan arus listrik yang menyebabkan panas. Namun proses ini adalah reversibel jika dilakukan dalam batas kemampuan. Dalam kasus pencatuan-maju (sesuai dengan arah gambar panah), diode ini akan memberikan tegangan jatuh (drop voltage) sekitar 0.6 Volt yang biasa untuk diode silikon. Tegangan jatuh ini tergantung dari jenis diode yang dipakai.
Sebuah diode Zener memiliki sifat yang hampir sama dengan diode biasa, kecuali bahwa alat ini sengaja dibuat dengan tegangan tembus yang jauh dikurangi, disebut tegangan Zener. Sebuah diode Zener memiliki p-n junction yang memiliki doping berat, yang memungkinkan elektron untuk tembus (tunnel) dari pita valensi material tipe-p ke dalam pita konduksi material tipe-n. Sebuah diode Zener yang dicatu-balik akan menunjukan perilaku tegangan tembus yang terkontrol dan akan melewatkan arus listrik untuk menjaga tegangan jatuh supaya tetap pada tegangan Zener. Sebagai contoh, sebuah diode Zener 3.2 Volt akan menunjukan tegangan jatuh pada 3.2 Volt jika diberi catu-balik. Namun, karena arusnya terbatasi, sehingga diode Zener biasanya digunakan untuk membangkitkan tegangan referensi, untuk menstabilisasi tegangan aplikasi-aplikasi arus kecil, untuk melewatkan arus besar diperlukan rangkaian pendukung IC atau beberapa transistor sebagai output.
Tegangan tembusnya dapat dikontrol secara tepat dalam proses doping. Toleransi dalam 0.05% bisa dicapai walaupun toleransi yang paling biasa adalah 5% dan 10%.
Efek ini ditemukan oleh seorang fisikawan Amerika, Clarence Melvin Zener.
Mekanisme lainnya yang menghasilkan efek yang sama adalah efek avalanche, seperti di dalam diode avalanche. Kedua tipe diode ini sebenarnya dibentuk melalui proses yang sama dan kedua efek sebenarnya terjadi di kedua tipe diode ini. Dalam diode silikon, sampai dengan 5.6 Volt, efek Zener adalah efek utama dan efek ini menunjukan koefisiensi temperatur yang negatif. Di atas 5.6 Volt, efek avalanche menjadi efek utama dan juga menunjukan sifat koefisien temperatur positif.
Dalam diode Zener 5.6 Volt, kedua efek tersebut muncul bersamaan dan kedua koefisien temperatur membatalkan satu sama lainnya. Sehingga, diode 5.6 Volt menjadi pilihan utama di aplikasi temperatur yang sensitif.
Teknik-teknik manufaktur yang modern telah memungkinkan untuk membuat diode-diode yang memiliki tegangan jauh lebih rendah dari 5.6 Volt dengan koefisien temperatur yang sangat kecil. Namun dengan munculnya pemakai tegangan tinggi, koefisien temperatur muncul dengan singkat pula. Sebuah diode untuk 75 Volt memiliki koefisien panas yang 10 kali lipatnya koefisien sebuah diode 12 Volt.
Semua diode di pasaran dijual dengan tanda tulisan atau kode voltase operasinya ditulis dipermukaan kristal diode , biasanya dijual dinamakan diode Zener.
Pemakaian
Dioda Zener digunakan secara luas dalam sirkuit elektronik. Fungsi utamanya adalah untuk menstabilkan tegangan. Pada saat disambungkan secara parallel dengan sebuah sumber tegangan yang berubah-ubah yang dipasang sehingga mencatu-balik, sebuah diode Zener akan bertingkah seperti sebuah kortsleting (hubungan singkat) saat tegangan mencapai tegangan tembus diode tersebut. Hasilnya, tegangan akan dibatasi sampai ke sebuah angka yang telah ditetapkan sebelumnya.
Sebuah diode Zener juga digunakan seperti ini sebagai regulator tegangan shunt (shunt berarti sambungan parallel, dan regulator tegangan sebagai sebuah kelas sirkuit yang memberikan sumber tegangan tetap.

sumber:id.wikipedia.org/wiki/Dioda_Zener


Prinsip Kerja Dioda Zener
Dioda zener adalah salah satu jenis dioda yang memiliki sisi exsklusif pada daerah breakdownnya, sehingga dapat dimanfaatkan sebagai stabilizer atau pembatas tegangan. Struktur dioda zener hampir sama dengan dioda pada umumnya, hanya konsentrasi doping saja yang berbeda. Kurva karakteristik dioda zener juga sama seperti dioda pada umumnya, namun pada daerah breakdown dimana pada saat bias mundur mencapai tegangan breakdown maka arus dioda naik dengan cepat seperti pada gambar karakteristik dioda zener dibawah. Daerah breakdown inilah yang menjadi referensi untuk penerapan dari dioda zener. Sedangkan pada dioda biasa daerah breakdown meru[pakan daerah kritis yang harus dihindari dan tidak diperbolehkan pemberian tegangan mundur sampai pada daerah breakdown, karena bisa merusak dioda biasa. Gambar Kurva karakteristik Dioda Zener dasar teori dioda zener,teori zener,karakteristik zener,defini dioda zener,sioda zener,fungsi dioda zener,daerah breakdown zener,tegangan zener,rumus zener,rangkaian dasar stabilizer tegangan,rangkaian dasar zener,pembatas tegangan,arus maksimum zener,pengertian zener Titik breakdown dari suatu dioda zener dapat dikontrol dengan memvariasi konsentrasi doping. Konsentrasi doping yang tinggi, akan meningkatkan jumlah pengotoran sehingga tegangan zenernya (Vz) akan kecil. Demikian juga sebaliknya, dengan konsentrasi doping yang rendah diperoleh Vz yang tinggi. Pada umumnya dioda zener dipasaran tersedia mulai dari Vz 1,8 V sampai 200 V, dengan kemampuan daya dari ¼ hingga 50 W. Penerapan dioda zener yang paling penting adalah sebagai regulator atau stabilizer tegangan (voltage regulator). Rangkaian dasar stabilizer tegangan menggunakan dioda zener dapat dilihat pada gambar dibawah. Agar rangkaian ini dapat berfungsi dengan baik sebagai stabilizer tegangan, maka dioda zener harus bekerja pada daerah breakdown. Yaitu dengan memberikan tegangan sumber (Vi) harus lebih besar dari tegangan dioda zener (Vz). Rangkaian Dasar Stabilizer Dengan Dioda Zener dasar teori dioda zener,teori zener,karakteristik zener,defini dioda zener,sioda zener,fungsi dioda zener,daerah breakdown zener,tegangan zener,rumus zener,rangkaian dasar stabilizer tegangan,rangkaian dasar zener,pembatas tegangan,arus maksimum zener,pengertian zener Pada dioda zener terdapat nilai Izm (Arus zener maksimum) yang telah ditentukan ooleh pabrik dan arus zener tidak boleh melebihi Izm tersebut, karena akan mengakibatkan kerusakan pada dioda zener. RS adalah hambatan yang berfungsi sebagai pembatas arus untuk rangkaian stabilizer tegangan. Apabila tegangan Vi lebih tinggi dari Vz dan RL lebih besar dari RL minimum maka fungsi dari stabilizer tegangan pada dioda zener dapat bekerja, oleh karena itu RL harus lebih besar dari RLmin. RLmin dapat ditentukan pada saat VL = Vz sebagai berikut. RL_{min}=\frac{Rs.Vz}{Vi-Vz} Nilai RLmin ini akan menjamin dioda zener bekerja secara konsisten. Bila zener sudah bekerja, berarti VL = Vz = konstan, dan dengan menganggap Vi tetap maka turun tegangan pada RS (VR) juga tetap, yaitu : Vr=Vi-Vz Sehingga arus yang mengalir pada RS dapat diketahui dengan : IR=\frac{Vr}{Rs} Dan arus yang mengalir pada dioda zener dapat ditentukan dengan : Iz=IR-IL Arus pada dioda zener (Iz) tidak boleh melebihi nilai Izm yang telah ditentukan pabrik, untuk membatasi arus zener ini dapat mengatur nilai RS dengan rumusan diatas.

Read more at: http://elektronika-dasar.web.id/teori-elektronika/dioda-zener/
Copyright © Elektronika Dasar
Bila kita menghubungkan sebuah dioda seri dengan sebuah sumber tegangan DC sehingga dioda mengalami bias maju (forward bias), tegangan dioda akan cenderung konstan walaupun tegangan power supplynya dinaikkan terus seperti pada gambar 1a.
Arus yang mengalir pada dioda yang bias maju, proporsional dengan pangkat tegangan. Karena linier atau proposrional dengan pangkat tegangan, maka sedikit saja kenaikan tegangan dioda pada saat bias maju, arus yang mengalir cenderung naik lebih besar. Atau dengan kata lain, kenaikan arus dioda yang sangat besar tidak terlalu mempengaruhi tegangan dioda. Rangkaian pada gambar 1a, arus dioda dioda ditentukan oleh tegangan power supply, resistansi resistor, dan tegangan on dioda (untuk dioda silikon sebesar 0.7 V). Pada saat tegangan power supply dinaikkan, maka tegangan resistor juga naik dalam jumlah yang hampir sama, sedangkan tegangan dioda hanya naik sedikit saja. Begitu juga apabila kita mengurangi tegangan power supply, maka tegangan dioda berkurang sedikit saja. Kesimpulannya, dioda pada rangkaian gambar 1a berfungsi sebagai regulator tegangan karena tegangan dioda tersebut cenderung konstan sebesar 0.7 V walaupun tegangan power supply diubah-ubah.
Sifat regulator tegangan pada dioda ini bisa dimanfaatkan. Misalkan kita membutuhkan tegangan 7 V yang bernilai konstan. Tetapi kita memiliki baterai 11.7 V yang nilai tegangannya semakin mengecil apabila baterai tersebut sering dipakai. Tetapi karena sebuah dioda silikon hanya bisa meregulasi tegangan hanya sekitar 0.7 V, maka setidaknya kita membutuhkan 10 buah dioda silikon yang dirangkai seri untuk mendapatkan tegangan 7 V teregulasi ini (10 x 0.7 V = 7V), seperti ditunjukkan pada gambar 1b.


Image result for REGULASI TEGANGAN DIODA SILIKON




Gambar 1 Dioda silikon digunakan sebagai regulator tegangan. (a) Sebuah dioda silikon hanya bisa meregulasi tegangan sebesar 0.7 V. (b) 10 buah dioda silikon bisa meregulasi tegangan 7 V.

Selama baterai  11.7 V yang digunakan tegangannya tidak kurang dari 7 V, maka output dari 10 dioda itu akan tetap bernilai 7 V.
Apabila kita perlu meregulasi tegangan yang lebih tinggi lagi, maka kita bisa mendapatkannya dengan menggunakan dioda silikon yang lebih banyak lagi, tentu saja ini tidak praktis. Metode lain yang bisa kita lakukan adalah dengan memanfaatkan tegangan balik breakdown dari dioda. Pada saat dioda mengalami bias terbalik (reverse bias), maka dioda tidak akan mengalirkan arus listrik. Namun, ada batasan tegangan yang bisa ditahan oleh dioda. Apabila tegangan balik terus dinaikkan, maka dioda yang seharusnya tidak menghantarkan arus, karena terlalu besarnya tegangan balik, dioda mengalami break down (jebol) sehingga bisa mengalirkan arus walaupun kondisinya bias terbalik.Tegangan balik breakdown untuk dioda silikon yang umum dipakai adalah sekitar 100 V. Kita bisa meregulasi tegangan 100 V, dengan memanfaatkan tegangan balik breakdown ini speerti ditunjukkan pada gambar 2a. Perhatikan penempatan dioda silikon pada gambar 2a. Dioda tersebut dikondisikan agar mengalami bias terbalik (reverse bias).
Tegangan balik breakdown untuk dioda silikon sekitar 100 V digunakan untuk meregulasi tegangan. (b) simbol dioda zener
Tegangan balik breakdown untuk dioda silikon sekitar 100 V digunakan untuk meregulasi tegangan. (b) simbol dioda zener
Gambar 2 (a) Tegangan balik breakdown untuk dioda silikon sekitar 100 V digunakan untuk meregulasi tegangan. (b) simbol dioda zener
 
Sayangnya, kita tidak mungkin menggunakan sifat tegangan breakdown ini, karena dioda silikon yang sudah terlanjur mengalami breakdown pasti mengalami kerusakan. Tetapi anda tidak perlu khawatir karena sudah ada dioda khusus yang digunakan untuk meregulasi tegangan berdasarkan prinsip tegangan breakdown. Dioda khusus ini disubut dioda zener. Simbol dari dioda zener ditunjukkan pada gambar 2b.
Ketika mengalami bias maju (forward bias), dioda zener juga memiliki sifat seperti dioda pada umumnya, ia akan mengalirkan arus dan memiliki tegangan sekitar 0.7 V. Begitu juga pada saat diberi tegangan balik, dioda zener akan mengalami bias terbalik (reverse bias) dan tidak akan mengalirkan arus kecuali tegangan balik tersebut mencapai tegangan breakdown maka dioda zener dapat menghantarkan arus listrik dalam mode bias terbalik. Tegangan breakdown pada dioda zener disebut dengan tegangan zener. Tidak seperti dioda biasa yang mengalami kerusakan apabila mencapai tegangan breakdown nya, dioda zener tidak akan rusak pada saat mengalami breakdown karena dioda ini memang khusus digunakan supaya mengalami breakdown. Dioda zener bisa rusak apabila daya yang diserap dioda zener tersebut melebihi ambang batas maksimumnya.
Pabrikan memproduksi dioda zener dengan rating tegangan zener yang sangat bervariasi mulai dari beberapa volt hingga ratusan volt. Parameter dari dioda zener ini dipengaruhi oleh suhu. Sama seperti resistor karbon, dioda zener memiliki error 5% hingga 10% dari spesifikasi yang telah ditentukan oleh pabrik. Namun, dioda zener memiliki stabilitas dan akurasi yang tinggi sehingga cukup baik untuk digunakan sebagai regulator tegangan pada rangkaian power supply yang umum seperti pada gambar 3.






Image result for DIODA ZENER
Gambar 3 Dioda zener pada rangkaian regulator. Dioda ini memiliki tegangan zener sebesar 12.6 V

Coba perhatikan peletakan orientasi dioda zener tersebut dalam gambar 3. Dioda pada rangkaian tersebut mengalami bias terbalik, dan begitulah pemakaian dioda zener yang seharusnya.Apabila kita meletakkan orientasi dari dioda zener pada posisi yang “normal”, maka dioda zener tersebut mengalami bias maju (forward bias) dan tegangan dioda tersebut sebesar 0. 7 V seperti jenis dioda pada umumnya. Apabila kita ingin memanfaatkan tegangan breakdown (tegangan zener) dari dioda ini, maka kita harus menggunakannya dalam mode bias terbalik (reverse bias). Selama tegangan power supply lebih besar dari tegangan zenernya (pada contoh gambar 3, dioda zener memiliki tegangan zener sebesar 12.6 V), maka tegangan pada dioda zener akan cenderung konstan sebesar 12.6 V.
Sama seperti komponen semikonduktor lainnya, dioda zener sensitif terhadap suhu. Temperatur yang berlebihan dapat merusak dioda zener dan karena dioda zener memiliki tegangan dan arus, maka dioda zener memiliki dissipasi daya yaitu sebesar P = VI. Oleh karena itu, pada saat mendisain rangkaian yang menggunakan dioda zener, kita harus memastikan bahwa dissipasi daya dioda zener tersebut tidak melebihi ambang batasnya. Ada hal yang unik, dioda zener yang mengalami kerusakan akibat dissipasi daya yang berlebihan  akan menjadi short circuit, bukan menjadi open circuit. Dioda zener yang mengalami kerusakan seperti ini, tegangan bias nya sama dengan nol volt baik itu pada saat bias maju maupun bias terbalik.
Mari kita menganalisa rangkaian regulator dioda zener ini secara matematis. Dalam contoh ini, kita menggunakan dioda zener dengan tegangan zener sebesar 12.6 V, tegangan power supply sebesar 45 V, dan sebuah resistor seri sebesar 1 kΩ. Rangkaian dioda zener sederhana ditunjukkan pada gambar 4a.
Apabila tegangagn dioda zener sebesar 12.5 V dan tegangan power supply sebesar 45 V, maka tegangan resistor adalah 45 V – 12.6 V = 32.4 V. Maka arus yang mengalir dalam rangkaian tersebut, sebesar 32.4V/1kΩ = 32.4 mA (gambar 4b).
Regulator dioda zener dengan resistor 1 kΩ. (b) Menghitung tegangan dan arus
(a) Regulator dioda zener dengan resistor 1 kΩ. (b) Menghitung tegangan dan arus
Gambar 4 (a) Regulator dioda zener dengan resistor 1 kΩ. (b) Menghitung tegangan dan arus

Daya dapat dihitung dengan mengalikan tegangan dengan arus (P = VI), sehingga kita bisa menghitung dissipasi daya pada resistor dan dioda zener dengan mudah
Presistor = (32.4 mA) (32.4 V) = 1.0498 W
Pdioda = (32.4 mA) (12.6 V) = 408.24 mW
Sebuah dioda zener dengan rating daya 0.5 W bisa digunakan pada rangkaian ini, sedangkan rating daya resistornya adalah 1.5 W atau 2 W.
Apabila penggunaan dioda zener dibatasi oleh dissipasi daya maksimum, lalu mengapa tidak membuat rangkaian dioda zener dengan daya yang sangat minimum saja? Yaitu dengan cara memakan resistor yang memiliki resistansi yang sangat besar sehingga arus yang mengalir dalam rangkaian menjadi kecil. Karena arus mengecil, maka dissipasi daya pada dioda zener juga lebih kecil. Mari kita lakukan percobaan ini. Kita perbesar ukuran resistor menjadi 100 kΩ. Kita gunakan rangkaian yang sama seperti pada gambar 4, hanya saja resistornya diperbesar hingga 100 kΩ. Maka rangkaiannya ditunjukkan pada gambar 5.
Rangkaian regulator zener dengan resistor seri 100 kΩ
Rangkaian regulator zener dengan resistor seri 100 kΩ
Gambar 5 Rangkaian regulator zener dengan resistor seri 100 kΩ

Sekarang arus yang mengalir dalam rangkaian menjadi seperseratus dari rangkaian sebelumnya yaitu 324 μA (arus pada rangkaian sebelumnya sebesar 32.4 mA). Sedakarang dissipasi dayanya 100 kali lebih kecil dari sebelumnya
Presistor = (324 μA) (32.4 V) = 10.498 mW
Pdioda = (324 μA) (12.6 V) = 4.0824 mW
Sekarang dissipasi daya pada masing-masing komponen menjadi lebih kecil. Sehingga suhu pada dioda dan resistor menjadi lebih dingin karena dissipasi dayanya berkurang. Tetapi sayangnya, ada masalah lain yang muncul. Ingat bahwa fungsi dari rangkaian regulator adalah menghasilkan tegangan yang stabil  untuk menyuplai rangkaian lainnya. Dengan kata lain, tujuan kita adalah menyuplai daya ke suatu rangkaian pada tegangan 12.6 V, berapapun arus yang diminta oleh rangkaian tersebut, tegangannya tidak drop dan harus tetap 12.6 V. Kita kembali pada rangkaian awal yaitu rangkaian pada gambar 4. Rangkaian regulator tersebut akan digunakan untuk menyuplai suatu beban yang memiliki resistansi sebesar 500 Ω dan dirangkai paralel dengan dioda zener seperti ditunjukkan pada gambar 6.
Regulator zener dengan resistor seri 1 kΩ dan beban 500 Ω
Regulator zener dengan resistor seri 1 kΩ dan beban 500 Ω
Gambar 6 Regulator zener dengan resistor seri 1 kΩ dan beban 500 Ω.

Apabila tegangan dari regulator dipertahankan pada level 12.6 V untuk menyuplai beban berupa resistor 500 Ω, maka beban tersebut akan meminta arus sebesar 12.6 V / 500 Ω = 25.2 mA. Tegangan resistor sebesar 45 V – 12.6 V = 32.4 V. Berarti arus yang mengalir dalam rangkaian sebesar 32.4 mA. Karena arus yang disuplai oleh sumber tegangan sebesar 32.4 mA, sedangkan arus yang diminta oleh beban sebesar 25.2 mA, maka masih ada kelebihan arus yaitu arus yang mengalir ke dioda zener sebesar 32.4 mA – 25.2 mA = 7.2 mA.
Sekarang mari kita analisa rangkaian dioda zener yang “lebih irit”, yaitu rangkaian dioda zener yang memiliki resistansi sebesar 100 kΩ. Rangkaian regulator tersebut juga akan digunakan untuk menyuplai energi pada beban berupa resistor sebesar 500 Ω seperti ditunjukkan pada gambar 7. Harapan kita, rangkaian regulator ini dapat menghasilkan tegangan yang konstan sebesar 12.6 V. Nanti kita akan mengetahui bahwa rangkaian pada gambar 7 ini gagal dalam meregulasi tegangan.
Dioda zener yang gagal untuk meregulasi tegangan pada suatu beban
Dioda zener yang gagal untuk meregulasi tegangan pada suatu beban
Gambar 7 Dioda zener yang gagal untuk meregulasi tegangan pada suatu beban
 
Dengan menggunakan resistor yang berukuran 100 kali lebih besar yaitu 100 kΩ, maka tegangan pada beban resistor 500 Ω hanya sebesar 224 mV, sangat jauh dari yang diharapkan yaitu 12.6 V. Apabila tegangan pada beban sebesar 12.6 V, maka arus yang mengalir pada beban sebesar 25.2 mA seperti pada contoh rangkaian sebelumnya. Pada kondisi ini, dioda zener menjadi off dan diganti dengan open circuit.
Untuk lebih mempermudah, mari kita analisa rangkaian ini tanpa menyertakan dioda zener seperti ditunjukkan pada gambar 8. Karena dirangkai seri, maka resistansi total dari kedua resistor tersebut sebesar 100.5 kΩ. Dengan menggunakan hukum Ohm, maka kita bisa menghitung arus dalam rangkaian tersebut yaitu sebesar 45 V/100.5 kΩ = 447.76 μA. Arus yang mengalir pada tiap komponen memiliki nilai yang sama karena dirangkai seri. Maka tegangan pada resistor beban, 500 Ω, sebesar 224 mV. Karena dioda zener dirangkai paralel dengan resistr beban, maka tegangan resistor sama dengan tegangan dioda zener yaitu sebesar 224 mV. Tegangan ini tentu saja terlalu rendah dan dioda zener tidak bisa aktif. Agar dioda zener bisa aktif, tegangan minimumnya adalah 12.6 V.
Rangkaian tanpa regulator dioda zener
Rangkaian tanpa regulator dioda zener
Gambar 8 Rangkaian tanpa regulator dioda zener
 
Berikut ini tabel yang menunjukkan daftar dioda zener dengan rating tegangan zener dan dissipasi daya maksimum yang tersedia di pasaran.
Tabel 1 Dioda zener dengan rating tegangan zener yang tersedia di pasaran

Dioda zener dengan rating tegangan zener yang tersedia di pasaran
Dioda zener dengan rating tegangan zener yang tersedia di pasaran

Tidak ada komentar :

Posting Komentar

Jangan lupa komentar ya